摘要
						
					
					
					
						
						
							传统句子加工理论认为,N400与语义加工困难相关,而P600则反映了句法的修复过程。然而,语义P600的出现却打破了这种一一对应的关系,引起了学术界的极大关注和对句子加工神经机制的再思考。本文对以往研究者提出的六个句子加工模型,即语义吸引模型、监控理论、持续的联合分析模型、扩展的论元依赖模型、加工竞争模型和提取-整合模型进行了梳理,并结合句子加工研究的最新研究成果,对N400和P600成分的神经机制以及相关争议问题进行探讨。
						
						
						
						
						
							
Abstract
						
						
							 Traditional sentence processing theories claim that N400 indexes the difficulty of semantic integration and that P600 reflects the revision of syntactic process. However, it is no longer a tenable proposition with the “semantic P600-effect” triggered by the semantic implausibility, which stirred the curiosity of the academia and a rethink of the neural mechanism of sentence processing. In this paper, six major architectures of sentence interpretation -- Semantic Attraction, Monitoring Theory, Continued Combinatory Analysis, the extended Argument Dependency Model, Processing Competition and Retrieval-Integration -- were reviewed and the neural mechanism and debates concerning N400 and P600 were discussed based on the latest research findings.
						
						
					
					
					
					
					
					
					
						
关键词
					
					
						
							句子加工
  /  
						
							N400  /  
						
							P600  /  
						
							模型    
						
					
					
					
					
					
						
Key words
					
					
						
							  /  
						
							margin: 6pt 0cm  /  
						
							text-indent: 21pt">N400  /  
						
							P600  /  
						
							sentence processing  /  
						
							models    
						
					
					
					
					 
					
					
					
					
					
					
					
					 
					
					
						
							
								
									
									
									季月, 李霄翔. 
									
									N400?还是P600?——句子加工模型的再探讨[J]. 外语教学理论与实践. 2018, 162(1): 48 
								
							 
						 
					 
					
					
					
						
							
								
									
									
									JI  Yue, LI  Xiao-Xiang. 
									
									N400? or P600? --a further review on sentence processing models[J]. Foreign Language Learning Theory and Practice. 2018, 162(1): 48 
								
							 
						 
					 
					
					
						
					
					
					
					
						
						
					
					
						
						
						
							
								
									
{{custom_sec.title}}
								
								
									
{{custom_sec.title}}
								
								
								
								{{custom_sec.content}}